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The problem of existence and stability of steady oscillations of a mechanical
system of arbitrary order with the right-hand sides of its equations represented
by series in powers of some, generally speaking, not necessarily small para -
meter is solved, When that parameter vanishes, the system becomes linear
whose characteristic equation has a pair of pure imaginary roots with the re -
maining roots having negative real parts, One of the methods of oscillation
investigation of systems of such form is that of Kamenkov [1] which has a
number of positive features, His method was essentially developed for second
order systems; for systems of arbitrary order a method is indicated in [1] for
the derivation of periodic solutions in the form of series in powers of a para-
meter, Another system of investigation of nonlinear systems of arbitrary order
is proposed here, It is based on and is a development of Kamenkov's method
[1]. Sufficientconditions of steadiness and stability of oscillations within a
range are obtained, and a theorem which makes possible to estimate the ex -
tent of that region and, also, the limit value p, of parameter p such that
forall B <y the steadiness and stability conditions are maintained, An
example is considered,

1, Let us consider a mechanical system whose behavior is defined by the following
system of differential equations:

r=—M+pX;+pw2Xo+..., ¥=A+pnY, +p¥¥,4... (L1)
$j.= Epjkzk—*—er]l—{—p«zX’g"*‘ ] "=1v2’°-n n
K

=1
where n is any positive integer and | is a positive parameter,

We make the following assumptions about (1,1),

1°. The right-hand sides of (1.1) represent absolutely convergent series in the
investigated range of variation of variables &, ¥, z; and of parameter p.

2. X, Y, X;(G=1,2,...,n;1=1,2,...) denote sums of forms
relative to variables z, y, z,, . .., z, of any finite order vy, vy, v; with
constant coefficients g 0, b0, c, » respectively, so that

Vxcl (1.2)
X (x Yy Zyy ooy ) = > ag)zkxykux’{‘. .. xkn
Ktk ARty =m
btk >1 ' 1=1,2,...

and so on; the lower powers of forms my,;, m,;, m;; >> 1 , and the asterisk * denotes
a set of indices (k., ky, ky, . . ., k).
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66 V. T.Gmumondz

8°. Roots of the characteristic polynomial D () = | piy — 8i% | of the ad-
joint system, i, e, of the system consisting of equations of system (1, 1) except the first
two, satisfy the condition Re %; << 0 (jf = 1, 2,. . ., n)andareoftheform 5, =
8 t+ iy, %pra = gx — ihg, %5 = d,; g, <<0,d,<<0,k=1,2,.. L 08 == 20
1,.. ., n,withall x;(j =1, 2,. . ., n) different, (If a system of (n - 2)-nd order
with a pair of pure imaginary roots and 7 roofs with negative real parts is specified
in a general form, we shall assume that the reduction to form (1, 1) by means of known
linear transformation methods [2] has been already effected ),

4°. The right~hand sides of the system, i, e. the system consisting of the first two
equations of system (1,1), vanish when « = y =20,

Note that when (1, 1) does not satisfy the last condition, then in any case with the
supplementary assumption that m,;, My, m; > 2 it is possible to reduce it to the
required form using the appropriate transformation [2] which is feasible on the basis of
the theorem in Sect, 30 of [2] when condition 3° is satisfied,

Using the reasoning in [3 ] we transform system (1, 1) so that the adjoint system as~

sumes the canonical form  w; =x%wi(j=1,2, ..., n) and pass in the trans~
formed system to real variables 2z, ..., z,. As the result variables %y, . . ., Ts
and 2y ..., 2, arerelated by the following formulas:
a
H. (g, + ih,) H; (g, + ih)
x=..22 Re[i¥e T W], _ymu[ 28T W], V0 (13)
3 k—.l{ {Dr(gk+ Lhk) z}c Im D (gk+ Lhk) k+a

N H;(d) , dD (%)
Z T)%.(Eljzs’ D' () = dn

where in virtue of assumption 3° we have D’ (x;) 5= 0 . Polynomials H; (%) are
derived using the determinant D (x) [3].

We introduce polar coordinates £ =rcos 6, y —=rsin @ and, then, the
new variable of the form

ey (1- 4)
r=2o9 + 32 Z pqu§q> (8), my — max {’\"xh V'yl}
q=1

where ©,(V (8), . . ., u,™)(B) are periodic functions of 6 of period 2m, which
are defined below, We assume henceforth that parameter W is sufficiently small for
function @, defined intermsof r and @ by Eq, (1.4), to be positive definite
with respecttoany r >0 andall § belonging to the region of investigation,
and so that throughout that region the following inequalities are satisfied;

r> 0, H = dr (p, 8)/dp > 0 (1.5)
We define functions w,®, ..., u,(™) and the constants g,®) ., g (m)
as follows:
WY = =D =0, i min (g m, )

1=1,2,...
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8
ul® (8) = "%S [RED () — gD a9, q=m,...m,
i

n
1 ¢ , ;
ggl) NS gim"‘l) = 0, gg’) = Era S Rg,l Q)(‘p) d‘i’

0

RP(p,0)= 3 p*RY"?(6)

gq=m
- ofatty (49
Rl (P» e: Ziy e "Zn) - 2 v (A cos 8 +
Kyt e e, =m
Vi o HE,>1

BYsin 0) cos ¥z g smkvezl e Zin

where Ri® (p, 0) is that part of function Ry (0, 0, 25, . . ., 2,) whichis in-
dependent of 21,.-.,2%n5 and 4,Mand B," are constant coefficients obtained by

the above transformations, System (1,1) then assumes the form

o'H = pL; (p) + »P1(p, 0, 21, ...,2.) + 12Py(p, 0,21, .. ., 20, 1) (1.6)
O =A+puFi(py0,2,...,2)+pnF,(p,0,2;,...,20, 1)

2y = gZx — MxZksa -+ B2y + WP Zke 4 .

Zyiq = PuZr + BxZkia + Plxia,1 + Woyia,2+ .-

zs'=d,zs+uzsl+p.2Z,2+ e k=1,2,..,0 s=2a-+1,...,n

Owing to the selection of functions u,(? (8) and constants g,(? , the expression
L, (p)] is the following polynomial with constant coefficients:

™y
Lip)= 3 gp (.7

g=m

The second term in the right-hand side of the first of Eqs, (1.6) is
mMy~~-1 m;—kx«-k
wWPi—p S oMy S Y (AP cos + BW sin6) x
Kotk o, =1

. K
cos®*0 sin®v 0z}, . . ., zan

Hence the right-hand sides of (1, 6) are absolutely convergent series in powers of
parameter L, whose coefficients are forms of finite orders relative to 21, + .« +y 2n
and P with coefficients varying with respect to 0 with the general period 2.

2, The presence of noncritical variables 2y, . . ., 2,  in(1.6) considerably
complicates the problem as compared to that solved in [1] for second order systems,
Unlike in [1] we investigate the system as follows: we simultaneously seek some limit
value p* of parameter i and certain restrictions on the initial values of variables

Z1, .y 2, and p such that for 0 << p<{p* and when the representing point
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M () belongs to that region at ¢ = o ,then forall ¢ > to it remains in that
region, and oscillations of the system are steady in the meaning defined in {1].
Let us assume that the polynomial L, (p) has positive roots 1, . . ., Py (v <
m,; — m)  and let among these some root p; be of odd multiplicity s. We use
the notation L, (91) = (d®L, (p) / dPs)p=p; and select some arbitrary positive
numbers €; and &, which satisfy the inequalities

0<er<pju—p5 0<e <pj— pia (21)

In the space of coordinates p, 8, 21, .-. ., 2, we determine the sets

Nﬂ (8;‘, gy, Ao) = Go ﬂ Kol ﬂ Koz
T (21, 8, 4} = G | Ki' U K’
N (e, 80, 49) =G ) Ki ) K,

where A, is some positive number and

Go:|2|2<<A4® 00<<2, p>0
Korizg—areany 0 C0<2n, 0<p<<op.

Ko :2; —areany 0 0< 25, pa<p

G:lz]? =4 0<0<2n, ps<p<pa
K/':|z]?<C42 0<<0<2n, p=p,

Ky :[z]2<C A8 0<<O0<2m, p=np
G:|z|2<CA2 0<<O<22n, p>0
Ki:zp—areany 0<CO<2n, 0<p<{pa
Kyiz—ae any 0<0<2n, pp<Cp

P = pj+ &1, Pp=0;— &, [2|*=12"+4 ...+ 2z

For n = 1 region N represents a segment of a ring-form cylinder in a three ~ di-
mensional space,

Let us consider the Liapunov functions Vi ==p and V, =1/,|z]|? that
are positive definite with respect to a part of variables.

Lemma 1, N = N, {J ', where T isthecompleteboundaryofregion V.
Proof of this lemma is obvious,

Lemma 2, Let the system of differential equations

0 =F(0,0,2,....,2), §=0(p,0,2,..., 2) (2.2)
Z = Zk (p’ 9’ 21y o » oy Zn)r E=1,2,..,n

where functions F, @, and Z, (k =1, 2, ..., n) and their partial derivatives
are continuous, satisfy the conditions: V,” < 0 for all (0, 0,21,...,2) =6,
Vi<<0 forall(p, 8,2, ...,2)c Ki',and V" >0 forall (p, 0, z4, .
. 2%,) & K,’, where V,° and V, are derivatives of functions ¥, and
V, by virtue of system (2.2). Then any representing point M (t) with coordinates

(o, 8, 21, . . ., 2,) that satisfies the condition M (¢,) &= N for t = ¢,, sat-
isfies the condition M (t) e N, forall ¢t > f,.
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Proof, We prove the lemma by proving the following two statements: A) If
M) Ny, then M(t) =N, forall ¢>1t ,and B)if M () =T, then
M (t) = No forall t >t Let us prove the statement A) by assuming the contrary:
there exists a T >t suchthat M (T) & T, and that point M (1) reaches T at
instant ¢t = T for the first time after instant ¢ = f, . According to Lemmal, T is
the complete boundary of region Ny, hence only the following cases are possible:
1) M()e 6, 2) M(T)= K/, 3) M(T) = K,

Let us consider the first possibility . The continuity of V," implies the existence
of t* =lt, T) such that for all M (¢), where ¢ [t*, T], theinequality V," <0
is satisfied, For V,(t) along the trajectory of the representing point M (¢) we have

t
Val) =V + | vyar (@.2)

By assumption V, (1*) < Yy A3, Vo (T) =1/2H;1°2, and owing tothe selectionof *

the derivative Vg’ (1) < 0 forall ¢t [t®, T], which contradicts equality (2,3 )where
t = T isassumed, Similarreasoning proves thisstatementincases 2 and 3,and also
statement B), Notethatin proving the latteritisnecessary touse equations of the type
(2.3) simultaneously for V; and Vj,

Theorem 1, Let p; bea positive root of odd multiplicity s of polynomialL,(p)
andlet L, (p;) << 0. Then there exist such p*, A4o*, e,*, andsuch e* and e,*
which satisfy conditions (2, 1) thatforall p <C p*® and all ¢ & (Z,, 0) the repre-
senting point M (2) € N, (8% e,*,A,*), ifonly M (t) = N (e*, e,*, A,*%).

Proof, Consider the following inequalities:

Ly (pa) + Pig (pay Ao) + nPsg (Pas 1y Ao) <0 (2.4)
Li (pa) — Pio (ps) Ao) — WPy (pss 1y 4¢) >0
where gAy+ E (pu, 1y 4o) <0
my—1 ‘ml—kx—k
Py (p, Ao) — 2 pk:r.*ku 2 v ([A;l)]z + [B;l)]2)1l’Agl+.-.+kn
Kyt =0 o —
E (far by 4) =S Syt 3) S ) gt
=1 j=1 Ktk ootk =n
kx+kv>1
n= inizn {mir}y  my = max {vy, vy}
T
f=pa+p(Ppg+ ... +ofmpm), g =  max {gx, do}<<0
s ta
D;; (g, +ihy) D;; (g, + ihy) D;; @)
S = {Ile.k l g By + iy na}
’F:E’.;f’% CH G T | fm Hi(gp+thy) 17| H,()
8 ]=2a:|-'1','.'.’. n
dul®
PSP PI<Pro [10@)]<o@, |22 |< o

0<9<2:t, g=m,...,my
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P,, is a series in powers of [ whose coefficients are similar to those of Pip; 047
and 010(? are positive numbers which bound functions | u;@ | and | du,@ / df |;

Dj; is the cofactor of the element in the j-throw and -th column of deter-
minant D (%) and defines the coefficients of the inverse transformation of (1,3).

We assume, without loss of generality, that the region of absolute convergence of
series indicated in statement 1° in Sect, 1 is such that the series in the left-hand sides
of inequalities (2,4 ) are convergent in some closed bounded region of variables &;, &,,
and A, that contains point &; = & = A, = 0.  We select in that region any

e,* and &,* that satisfy conditions (2, 1), Since L, (p;) << 0, hence L, (p,*) << 0
and Ly (pg*) > 0, where p.* = p; + &%, pg* = p; — e,*. The form of the
first two of inequalities (2,4) implies that when L, (p,*) << 0 and Ly (p3*) > 0
there exists such numbers p’ > 0 and 4,* > (0 that the first two of that in-
equality are satisfied forall p << p’ and A, <{ Ao* . Weselectnow p* < p
such that forall p < p* and the chosen 4, = A * the last of inequalities (2,4)
is satisfied, The form of expression g'A, 4+ E implies that this can be always
achieved,since g << 0 and A4, = A,* has been already chosen, Then condi -
tions (2,4 ) are satisfied forall p << p* and 4, = 4,* . The first two of these
conditions ensure that the inequalities Vy" << 0 and ¥;" >0 on K,  and K,
respectively, are satisfied, while the last of conditions (2, 4) ensures the fulfilment of
the inequality V," << 0 on G’, where V,, V,, K,’, K,’, and G’ were defined
earlier, and the derivatives are taken on the basis of (1,6), The latter can be ascer-
tained by a direct check, From this in conformity with Lemma 2 follows Theorem 1,

Thus under the stated conditions the investigated system has oscillations that are
steady in the meaning of [1] and correspond to the root p; . They represent motions
for which the representing point belongs to N when ¢ =1, .

Theorem 2, Let P; be a positive root of odd multiplicity s of the poly-
nomial L; (p). Thenif L,® (p;) << 0 andall p << u* steady oscillations are
stable in region N (e.*, e,*, A,*) and unstable in region N, = G [) Koo
if L (pj) > 0, there exist positive numbers pu’, A,", and &, and &,’ that
satisfy conditions (2, 1) and are such that for all M <C p.' the system motion is un-
stable in region N, = N (e,’, 8,’, A,'). (Here Ko, denotes the addition to region

K¢ and stability in a particular region is understood in the meaning of [4] ).

Proof, Stability in region N is obvious, To prove instability it is sufficient
to change the direction of variation of ¢ along the trajectory of the system represent-
ing point, and select for the initial position of the latter point M, of region N,
without the boundary (or N, without the boundary) which is reached by the repre -
senting point M_ (t) at some fixed T > o when the direction of ¢ is reversed,
and which at ¢ = ¢, belongs to the boundary of N1 (or N, ). It is obvious that,
at least, the representing point M (¢), whose motion begins at M, leaves region N,
(or Ny) in the finite time interval 7T — £, . The existence of such p’, A4,’, g,’,
and &,” which ensure the necessary signs of derivatives at the boundaries of region

N, is implied, as in Theorem 1, by the analysis of the first two of inequalities (2. 4)
in which, however, the signs of the second and third terms and the signs of the inequal-
ities themselves have been reversed,

Theorem 3. Let the conditions of Theorem 1besatisfiedandlet Wi = @i{g,)
and p, = @, (e;) be solutions of equations which are obtained forsome A o** > 0

14
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and conditions (2, 1) from the first two of inequalities (2,4 ) by substituting the equality
symbol for that of inequality, Furthermore, let p,, = max @, (g;) = @1 (&10),
Rao = MaX @y (€;) = @y (840), where 210 and &y satisfy conditions (2.1). Then
in any case the quantity p** = min {10, Poo, Sup p'}, where p’ represents such
p for which conditions (1, 5) and the last of conditions (2, 4) are satisfied for &5 =
€10 and &, == &9y , can be taken as the limit value of parameter W which cor-
responds to A4 **, &1, €5, and pj.

The proof of this theorem is directly obtained from the analysis of inequalities
(2.4) and (1.5).

Theorems 1 and 2 establish the conditions of existence and stability of steady os-
cillations and Theorem 3 outlines the method of deriving the values of P** and
parameters A**, €10, and &y inregion V. Obviously,in the general case p**
<.

If system (1, 1) is considered as a system of equations of perturbed motion, the above
theorems provide a solution of the problem of stability in the critical case in the region
of a pairof pure imaginary roots of the characteristic equation, since according to con-
ditions 2° and 4° polynomial L, (p) has always a zero root, and region /N contains
in that case the coordinate origin, Theorem 3 provides the means for estimating the
region of attraction,

All of the above together with Theorems 1—3 is also valid in the case when in the
investigated systems functions X;, Y, and X;; (j=1,2,... ,m01 =1,2,...)
have as their coefficients functions of time that are continuous and uniformly bounded
for ¢t = (—o0, o) and periodic for X; and Y, , while for the remaining X,

Y,, X;, not necessarily periodic, and the right-hand sides of the system contain
additional terms in the form of absolutely convergentfor ¢ & (-—o0, oo), series

00

S, N OO, S B 0)
=1 =1 1==1
respectively, where Frq(2), D, (1), xn (¢) are also continuous and uniformly
bounded functions ¢ & (—oo0, o) and Fg, Fy, @o, D1 are periodic func -
tions of ¢ , provided that all remaining assumptions about the considered system are
maintained,
In such case the investigated systems can, in accordance with [1], be reduced to
a form in which the functionsthat play the part of functions Fgq (¢), Fy (£), @y (8),
®, (¢) in a critical system, vanish, while functions that play the part of X, and
Y, have only coefficients that are independent of time, It is evident that all other
consdierations remain unchanged, except, of course, the form of expressions in con -
ditions (2, 4 ) which is affected by such transformation and the presence of additional
terms in (1,1).

8. As an example of the application of above results we shall investigate the
character of oscillations of some solid body in a stream of fluid and provided with con-
trol organs relative to a fixed direction E in space, We assume that the buoyancy
force is equal to the weight of the body and is applied at the center of gravity of the
latter, The body is subjected to hydrodynamic and control forces and moments, The
controls are effected by water jets or screw propellers [5] and the body moves in a
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horizontal plane which is also the plane of the velocity vector Vo of the oncoming
fluid stream, Ve = const, ¢, = const, and 0 < ¢, << 2n, where @ is
the angle between that vector and the  § -direction.

The coordinate system Axyz attached to the body has its origin at the center
of gravity and the coordinates lie in the body symmetry planes, Let m be the mass
of the body, L itslength, S the area of its middle section, [, the moment
of inertia with respect to the vertical axis ¥, Agzs  be the apparent moment of in-
ertia, and the apparent masses A;; = Ags.

We use the known equations of motion of a body in a horizontal plane in a fluid
(see, e.g., [5]), approximate the dependence of hydrodynamic forces and moments
on the angle of drift P = ¢ — @, ( ¢ is the angle between the A ~axis and
the E ~direction ) by Legendre polynomials, and introduce dimensionless variables

T, v, v, ¢, and w,’ defined as follows:

V'S" , MU, , MWy

msS s .
<P=7m¢, 0y = Oy T, Fhs
We specify in the general case the following structure of the dimensionless control
forces and moments:

PS% ’ ’ /3 1]
x = " Cx0 ((Pv) o -+ lxlvx -+ lxzvz + 1 [Raavy F ngev, ]
3,1: s
Fp= —cun(9s) p_ég,ﬁ” + L + L) -+ p [nzlvx'a‘Jr‘ Nyaly ’]
SL 7 i2 04
My, = —myo () p o+ Fig® + B [0 - 700”]

where Cxq (@o)s €20 (9o), and my, (@,) are polynomials that are functions of
polynomials which approximate hydrodynamic characteristics, and introduce the sub-
stitution @' = — {f% ]~*'z ¢-». Then, assuming that

k(p < 0: lxl + lzz < 0; (lzl + lzg)z + 4 (lxslzi " ix1 zz) < 0

we obtain, as can be readily verified, a system of equations of the form(1,1) in which
the characteristic equation has a pair of pure imaginary roots ==iA (because k,<<()
and two complex~-conjugate roots with real parts equal Iy + I;3 whenp = 0, and

’ 3/, mS
z = (P": Yy=0, I= vx‘: Tg = vz’s A= lk«’ ‘ !$ p = T T Ass
v

and among the set of coefficients in the right-hand sides there are thirty nonzero.
To reduce the system to the canonical form we further specify that I3 -+ I, 5=
la + 1, . The roots of polynomial L, (p) are of the form

_ 5 m2 (,)p VEL
p1—~0v 92,3::}:{—?—7‘—{50—);‘7@—‘]
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Functions my, (¢,) and A (¢,) are polynomials whose coefficients are deter-
mined by the coefficients of the approximating polynomials, We thus obtain that when
ne, << 0 andangle @, issuchthat A (p,) >0 and my (9,) 7= 0 then
for fairly small [ there exists steady oscillations which are stable with respect to
region N  and the equilibrium position is unstable, When no >0 and angle @,
issuchthat A (p,) <0 and m,, (p,) 5= 0, the oscillationsin N are un-
stable ; the equilibrium position relative to that region is stable.
Region N in terms of input variables is determined by the following inequalities:

2 w2 m2
Za_z+Tai<1? Az + Bﬂ2>1 (3.1)

Agmuv 2
(Hyovy + Hogv,)* + (Huv, + H 2102)2<<":T;:)

11
o _ VS
ho = T, R T o= TR
T S

Hw=73, Ho=—3, Hy=—Hy=—+

1
A= ‘ﬁ; (lz1!+ lz2 - lxl - lxz)
q 1
T, = E(gl Fli—1la) Si= _(gl +lee — L)

=Ya(la + L)y Bi=1) I (la + lzz)2 + 4 (laly — lxllzz) |‘/:
ra = (P2 + 10) {1 — ** [0V + (2 + £10)'0 ("]}
78 = (P2 — 830) {1 + P**[0{V + (P2 — £20)*0®]}

in which Ap and Bp are obtainedfrom A. and B, by substituting 7a for
r« . In the case of stable equilibrium position the second of inequalities in (3,1)
must be discarded,
Note that in the considered particular case oscillations (if they exist) with respect to
@ are not only stable but, also, periodic, as implied by Bendickson's theorem[8],
They are defined the following approximate formula :

P0) = = B [ (2 (40) + o209 ()] o8 e

1 [y (@,) pSL myy (@) P V' SL?
uP (M) = = [L’W (cos 2At — 1) — —-—”lzmz @) n 2%1’]

1
323

608 2AT — 81, 8in 2AT — 5 f'xi’]

ul® (Av) = [ c08 4AT + n,sindht

4”,

Numerical calculations require the availability of specific hydrodynamic char-
acteristics. In this case such calculations make possible the separation of region @,,
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of values of @y, in which for ny, > 0 the equilibrium position v, = v, ==
¢ =, =0 is stable relative to N, while oscillations are unstable, and
region (@,, of valuesof @, in whichfor n, <C 0 the equilibrium position is
stable and the oscillations unstable, They also make it possible to determine p**,
A ¥*, 819, & andregion N that correspond to such cases. For example, the
order of magnitude of these quantities for ¢, = 50°- (¢, & ®,,) are as follows:
R¥* ~ 107, e~ 1, ey~ 1, py~ 10, and 4, ~ 107,

The motion of the body, thus, consists of steady oscillations relative to the speci-
fied direction & and of some, generally speaking, small drift in the horizontal plane;
parameters of these motions are estimated by inequalities (3,1).

The author thanks the participants in the seminar on analytical mechanics and its
leader, V, V. Rumiantsev, for discussing this paper,
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