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The problem of existence and stability of steady oscillations of a mechanical 
system of arbitrary order with the right-hand sides of its equations represented 
by series in powers of some, generally speaking, not necessarily small para - 
meter is solved. When that parameter vanishes, the system becomes linear 
whose characteristic equatiar has a pair of pure imaginary roots with the re- 
maining roots having negative real parts. One of the methods of oscillation 
investigation of systems of such form is that of Kamenkov [l ] which has a 
number of positive features. His method was essentially developed for second 
order systems ; for systems of arbitrary order a method is indicated in [l ] for 
the derivation of periodic solutions in the form of series in powers of a para- 
meter. Another system of investigation of nonlinear systems of arbitrary order 
is proposed here. It is based on and is a development of Kamenkov’s method 
Cl]. Sufficient conditions of steadiness and stability of oscillations within a 
range are obtained, and a theorem which makes possible to estimate the ex - 
tent of that region and. also, the limit value PO of parameter P such that 
for all P < PO the steadiness and stability conditions are maintained. An 
example is considered. 

1. Let us consider a mechanical system whose behavior is defined by the following 
system of differential equations : 

x. = - hy + pxi + 112x2 + . . .) y’ = hx + pY1 + pays + . . . (1.1) 

Xj’ = k$, pjpk + pxjl d- p2xjs + - - -9 i = I,%. . ., n 

where n is any positive integer and p is a positive parameter. 
We make the following assumptions about (1.1). 
1”. The right-hand sides of (1.1) represent absolutely convergent series in the 

investigated range of variation of variables 2, y, a+ and of parameter p. 
2”. Xr, Y,, X1, (j = 1,2, . . ., n; I = 1,2, . . .) denote sums of forms 

relative to variables x, y, x1, . . . , x, of any finite order Y,Z, vul, vfl with 
constant coefficients a*(‘), b*(l), c* 9 respectively, so that 

%l 
x, (x, Y, 517 * * *9x,> = z lz~)xkxykvx~. . . x$ 

(1.2) 

k,+ky+h+.-+$, = mxl 

k,+kyhl 1 = 1, 2, . . . 

and so on ; the lower powers of forms m,r , m,,, mjr > 1 , and the asterisk * denotes 
a set of indices (k,, k,, k,, . . . , Ir,). 
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9”. Roots of the characteristic polynomial L) (X) = 1 pif - fii.$i 1 of the ad- 
joint system, i. e. of the system consisting of equations of system (1.1) except the first 
two, satisfy the condition Re xt ( 0 (j = ‘l, 2,. . . , n) and are ofthe form xk. = 
& + ihk, %++.a = g, - ih,, x, =d,;gk(0,d,<0,k==l,2,...,u;s-=2a-t- 

1 n,withall xi(i = 1, 2,. . ., a) different, (If a system of (n _t 2) -nd order 
&& a’bair of pure imaginary roots and n roots with negative real parts is specified 
in a general form, we shall assume that the reduction to form (1.1) by means of known 
linear transformation methods [2] has been already effected ) . 

4”. The right-hand sides of the system, i. e, the system consisting of the first two 
equations of system &I), vanish when r = y = 0. 

Note that when (1.1) does not satisfy the Iast condition, then in any case with the 
supplementary assumption that m,l, mu,, Mjt > 2 it is possible to reduce it to the 
requi&.dform using the appropriate transformation [2] which is feasible on the basis of 
the theorem in Sect. 30 of [23 when condition 3” is satisfied. 

Using the reasoning in [3] we transform system (1.1) so that the adjoint system as- 
sumes the canonical form wf’ = X,W& = 1,2, . * ., 4 and pass in the trans- 
formed system to real variables zl, . . . , ztb. As the result variables 51, . . ., % 
and zi7 . . *, %I are related by the following formulas: 

3=--2 (1.3) 

where in virtue of assumption 3” we have D'(Xj)#O l Polynomials H, (X) are 
derived using the determinant D (x) 131. 

We introduce polar coordinates 2 = T cos 8, y = F sin 6 and, then, the 
new variable of the form 

where ulfl) (6), . . . , ~.&~(~l) (8) are periodic functions of 8 of period 2%, which 
are defined below l We assume henceforth that parameter p is sufficiently small for 
function p, defined in terms of r and 0 by Eq, (1.4 ), to be positive definite 
with respect to any r > 0 and all fI belonging to the region of ~nv~tigati~, 
and so that throughout that region the following inewalities are satisfied: 

r > 0, H = dr (p, 0)/f& > 0 (1.5) 

We define functions u1(1), . . ., uliW and the constants gl(l), , . ., g,(m) 
as follows : 

$1) = . . . = z~i~-l) 5 0, r7z = min 
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e 

qd(fj) =+’ s [RF*‘($) - &‘I d$, q = m, . . ., ml 

0 

2% 

g$l)=.*.~gfJw=O, gi'c)s& ‘Rp*‘(@dlj 
1 s 

0 

R’,1)(p, 0) = 2 pQ~~li~)~Q) 
*=?7l 

mr 
RI (p, %zlr . . .rzn) = 11 pk2+8Y (Ap cos 8 + 

kx+ky+k+. . +k,=m 
k&MS,>1 

Ssf) sin 0) cosk”e sin%z:‘, . . ., z$ 

where RI(l) (p, 0) is that part of function RI (p, 8, zr, . . ., z,J which is in- 
dependent of 21, . . -, Gz; and A ,fO and B,f’) are constant coefficients obtained by 
the above transformations. System (I. 1) then assumeS the form 

p’H = @i (p) -I- @‘I (p, 0, zi, - - - 9 2,) + Paps (P, ~,ZI, - - *v %, PI (1.6) 

e = h -!- ~1 Fx (Pt 8, ~1, . . ., zh) i- p% (P, 8, % . . ., % IL) 

zl; = &$l, - hAc+a + @.kl+ pa&e + * a. 

%+a = hkzk -t-gkzkia + @k+a,l -t- p2Zk+a,z + = - * 

z,* = d,z, f pZ, + p2Z,2 -j- . . ., k = 1,2, . . ., a; s = 2a + 1, . . ., n 

Owing to the selection of functions UI(@ (6) and constants g,@) ) the expression 
L1 (p)j is the following polynomial with constant coefficients : 

-b (P) = 2 BIQ’P (1.7) 
q=m 

The second term in the right-band side of the first of 4s. (1.6) is 

~0~~x0 sinku CL+, . . ., Zlfn 

Hence the right-hand sides of (1.6 ) are absolutely convergent series in powers of 
parameter p, whose coefficients are forms of finite orders relative to 21, + . -, Zn 
and p with coefficients varying with respect to 8 with the general period 2n. 

2. The presence of noncritical variables 21, . . . , z, in (1.6 ) considerably 
complicates the problem as compared to that solved in fl] for second order systems, 
Unlike in Cl] we investigate the system as follows: we simultaneously seek some limit 
value IL* of parameter p and certain re&ictions on the initial values of variables 

zl, . . . , z, and p such that for 0 < p \<p,* and when the representing point 
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M (t) belongs to that region at t = $0 , then for all t > to it remains in that 
region, and oscillations of the system are steady in the meaning defined in 111. 

Let us assume that the Polynomial L, (p) has Positive roots pi, . v . , PV (Y < 
and let among these some root pj be of odd multiplicity S. We use 

pf and select some arbitrary positive 

numbers Ed and us which satisfy the inequalities 

0 < e1 < Pj+l - pj, 0 < 82 < pj - Pj-1 (2.l) 

In the space of coordinates p, 8, 21, .- . . , z, we determine the sets 

where A0 is some Positive number and 

6: 1 2 I a < Ao2, 0<9<23t, p>o 

K,’ : I .z 1 2 < AC, 0 < 8 < 2n, p = p$ 

G : I z I2 < Aoar O<8<2n, p>o 

Kx : zk -areany 0\(8<2n, O<p\(p, 

K, : zk - are any 0 c 8 K 2n, pB G p 

PU = Pi + 619 pp = pj - Et, 1 2 1 2 = 21~ + . . . + Zn2 

For n = 1 region N represents a segment of a ring-form cylinder in a three- di- 

mensional space. 
Let us consider the Liapunov functions VI = p and V, = 1/2 1 z 1 a that 

are positive definite with respect to a part of variables. 

Lemma I. N = NO U f, where I’ is the complete boundary of region hro. 
Proof of this lemma is obvious. 

Lemma 2. Let the system of differential equations 

p’ = F (P> 8, el, . . .$ 24, 8’ = cD (pt 8, zl, . . .1 2,~ f2.21 

zk’ = zk (P, 8, 21, . . ., &h k =: 1, 2, . . . . n 

where functions F, CD,, and & (k = 1, 2, . . . , n) and their partial derivatives 
are continuous, satisfy the conditions : I’,* < 0 for all (p, 0, 21, . . . , 2,) E G', 
VI' < 0 for all (p, 8,. zr, . . ., z,J E K1’, and V,’ > 0 for all (p, 8, 21, . 

- -, zn) E Ka’, where V,’ and V,’ are derivatives of functions VI and 

V2 by virtue of system (2.2). Then any representing point i%f (t) with c~rdinat~ 

is& t!k Zc’d,bki& 
z,,) that satisfies the condition AI (to) E N for t = t,, sat- 

M (0 E N, for all t > t,. 
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Proof. We prove the lemma by proving the following two statements: A ) If 
M (to) E No, then M (2) E NO for all t> to I and B ) if M (to) E I’, then 
M 0) E NO for all t > to. Let us prove the statement A ) by assuming the contrary : 

there exists a T > to such that M (T) E r, and that point (t) 

t = T for the first time after instant t = to . According to Lemma 1, I’ is 
the complete boundary of region Na, hence only the following cases are possible: 

1) M (T) E G’, 2) M (2’) E K1’, 3) M (T) E K9’ 

Let us consider the first possibility. The continuity of Vs. implies the existence 
of t* E [to, T) such that for all M (t), where t E It l , 2’1, the inequality Vs. < 0 
is satisfied. For V, (t) along the trajectory of the representing point M (t) we have 

f 
vz (t) = vcJ (t*) + j- V,‘& 

(2.3) 

By assumption V, (t*) < 1/Z A oa, V, (2’) =I& oa, and owing to the selection of t* 
thederivative Vs. (t) < 0 for all t E [t*, 2’1, which contradicts equality (2.3 ) where 
t = T is assumed. Similarreasoningproves this statement incases 2 and 3, and also 

statement B ). Note that in proving the latter it is necessary to use equations of the type 
(2.3 ) simultaneously for V, and V,, 

T he ore m 1. Let pj be a positive root of odd multiplicity s of polynomialLl (p) 
and let Li@) (pj) < 0. Then there exist such p*, A a*, e,*, and such IQ* and es* 
whichsatisfyconditions (2.1) thatforall j.& < p* and all t E (to, oo) the repre- 
senting point M (t) E No (Q*, e,*,A ,,*), if only M (to) E N (e,* , e,*, A o*). 

P r o o f . Consider the following inequalities : 

L k4 + PIO (~a, A,) + Pm (pa, P, A,) < 0 (2.4) 

Li (PS) - PM (PP~ A,) - G’s, (PP, IL, A,) > 0 

where g’Ao + E (pcl, ~11 A0) C 0 

ml-1 ml-kx-k 

PlO(P, Al)= 2 Pkz+ku 

k%+k =O Y 

k*+.qk 

-* n 

y, ([&']a + [B~)]+4p~+kn 

E @a, IL, A,) = 8 I$~2 jil k +k +k% 
r ” 

+k = fk”+k” 1 Ct* ‘) 1 Agkl+-+‘, 
I... ,rl 

k,+k,,X 

'1 = min {mjl}9 ml = max{v,,, vyl} 
1=1.2,... 

3=1,a.....n 

f = pa + p (oc,t’pc + . . . + i$ml) p,“‘), g’ = max {gk, &)<O 
k=l,%... a 

s=+xz+1....,n 

S = max 
Re Dji (g, + thk) 

~=i.z...., a Hi(gk +thk) ’ Irn I I 
j=1,a,..., n 
s=aw+1,..., n 



70 v. T . Grumondz 

Ps,, is a series in powers of IL whose coefficients are similar to those of plo; or(lr) 
and 

Dji 

Ur,(@ are positive numbers which bound functions 1 u,(g) 1 and 1 u’ul(‘l) / &I I; 
is the cofactor of the element in the i -th row and i -th column of deter- 

minant D (x) and defines the coefficients of the inverse transformation of (1.3 ) . 
We assume, without loss of generality, that the region of absoluteconvergence of 

series indicated in statement 1” in Sect. 1 is such that the series in the left-hand sides 
of inequalities (2.4) are convergent in some closed bounded region of variables el, E,, 
and A0 that contains point ai = as = A0 = 0. We select in that region any 

* and 

aZi 
&s* that satisfy conditions (2.1). Since L1ls) (pi) < 0, hence L, (pz*) < 0 

LI (p/3*) > 0, * = pj + &l*, 
first two of inequalities~~~~ i!?plies that when 

* = * The form of the 

,?$p,*) 2 0 ?nd L1 (pa*) > 0 
there exists such numbers /A’ > 0 and A,* > 0 that the first two of that in- 
equality are satisfied for all p < p’ and A a < A,,* . We select now !A.* < p’ 

such that for all p < p* and the chosen A 0 = A ,,* the last of inequalities (2.4 1 
is satisfied. The form of expression g’A ,-, -I- E implies that this can be always 
achieved,since g’ < 0 and A, = A ,,* has been already chosen. Then condi- 
tions (2.4) are satisfied for all /A < p* and A0 = A,* . The first two of these 
conditions ensure that the inequalities Vi’ < 0 and V,’ > 0 on K1’ and K,' , 
respectively, are satisfied, while the last of conditions (2.4) ensures the fulfilment of 
the inequality Vs’ < 0 on G', where V1 , V,, K1', KS', and G’ were defined 
earlier, and the derivatives are taken on the basis of (1.6). The latter can be aster - 
tained by a direct check. From this in conformity with Lemma 2 follows Theorem 1. 

Thus under the stated conditions the investigated system has oscillations that are 
steady in the meaning of Cl] and correspond to the root pr . They represent motions 
for which the representing point belongs to N when t = to . 

Theorem 2. Let pj be a positive root of odd multiplicity s of the poly - 
nomial L, (p). Then if Ll(@ (pj) < 0 and all p < CL* steady oscillation_s are 

stable in region N (al*, es*, A,*) and unstable in region Nr = G n K02; 

if LI@) (pj) > 0, there exist positive numbers p’, A,,’ , and 8,’ and &s’ that 
satisfy conditions (2.1) and are such that for all p < p’ the system motion is un- 
stable in region Ns = N (e,‘, es’, A,'). ( Here zo2 denotes the addition to region 
Koz and stability in a particular region is understood in the meaning of [4] 1. 

Proof. Stability in region N is obvious. To prove instability it is sufficient 
to change the direction of variation of t along the trajectory of the system represent- 
ing point, and select for the initial position of the latter point M0 of region N, 

without the boundary (or N, without the boundary) which is reached by the repre - 
senting point M_ (t) at some fixed Z > to when the direction of t is reversed, 
and which at t = t,, belongs to the boundary of N, (or N, 1. It is obvious that, 
at least, the representing point M (t), whose motion begins at M,-, leaves region Nr 
( or N,) in the finite time interval a - t,, . The existence of such p’, Aa’, er’, 
and es’ which ensure the necessary signs of derivatives at the boundaries of region 

N, is implied, as in Theorem 1, by the analysis of the first two of inequalities (2.4 1 
m which, however, the signs of the second and third terms and the signs of the inequal- 

ities themselves have been reversed. 
Theorem 3. Let the conditions of Theorem 1 besatisfiedandlet p1 = %(&I) 

and ps = q2 (e2) be solutions of equationswhichare obtained for some A o** > 0 
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and conditions (2.1) from the first two of inequalities (2.4) by substituting the equality 
symbol for that of inequality. Furthermore, let p10 = max (pl (8,) = C+J~ (era), 

P so = max qa (Q) = cpa (e,,), where 810 and e2s satisfy conditions (2.1). Then 
in any case the quantity p** = min {Pie, l.4~~ sup cl’}, where p’ represents such 

I-r for which conditions (1.5) and the last of conditions (2.4) are satisfied for 81 = 
elo and es = es0 , can be taken as the limit value of parameter ~1 which cor- 

responds to Ao**, elo, e20, and ~1. 

The proof of this theorem is directly obtained from the analysis of inequalities 

(2.4) and(1.5). 
Theorems 1 and 2 establish the conditions of existence and stability of steady os- 

cillations and Theorem 3 outlines the method of deriving the values of p** and 
parameters A o**, ~10, and 820 in region iv. Obviously, in the general case p** 

< CL*. 
If system (1.1) is considered as a system of equations of perturbed motion, the above 

theorems provide a solution of the problem of stability in the critical case in the region 
of a pair of pure imaginary roots of the characteristic equation, since according to con- 

ditions 2” and 4” polynomial Li (p) has always a zero root, and region N contains 

in that case the coordinate origin. Theorem 3 provides the means for estimating the 
region of attraction. 

All of the above together with Theorems 1 -3 is also valid in the case when in the 

Investigated systems functions XI, Yl, and Xj, (j= 1, 2, . . . , n; I = 1, 2, . . .) 
have as their coefficients functions of time that are continuous and uniformly bounded 

for t E (--oO, a) and periodic for Xi and Y, , while for the remaining Xl, 
y19 xjl not necessarily periodic, and the right-hand sides of the system contain 

additional terms in the form of absolutely convergent for t E (-oo , oo), series 

i P’-lFr-l (r>, 
Z=l 

rjl P’-‘@>I-i (r)7 5 P'Xjl (t) 

I=1 

respectively, where Fr-1 (t), al-1 (t), Xn (t) are also continuous and uniformly 

bounded functions t E (--00, oo) and Fo, F1, Do, @I are periodic func- 

tions of t , provided that all remaining assumptions about the considered system are 

maintained. 

In such case the investigated systems can, in accordance with [l ] , be reduced to 

a form in which the functions that play the part of functions Fo (t), FI (0, @o (0, 
@I 0) in a critical system, vanish, while functions that play the part of Xl and 

Y1 have only coefficients that are Independent of time. It is evident that all other 

consdierations remain unchanged, except, of course, the form of expressions in con - 

ditions (2.4) which is affected by such transformation and the presence of additional 

terms in (1.1) , 

3. As an example of the application of above results we shall investigate the 
character of oscillations of some solid body in a stream of fluid and provided with con- 
trol organs relative to a fixed direction E in space. We assume that the buoyancy 
force is equal to the weight of the body and is applied at the center of gravity of the 
latter. The body is subjected to hydrodynamic and control forces and moments. The 
controls are effected by water jets or screw propellers [5] and the body moves in a 
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horizontal plane which is also the plane of the velocity vector v, of the oncom~g 
fluid stream, v, = con.%, cpV = connt, and 0 < cpV ( 231, where CPU is 
the angle between that vector and the 8 -direction. 

The coordinate system AZ&~ attached to the body has its origin at the center 
of gravity and the coordinates lie in the body symmetry planes, Let m be the mass 
of the body, L its length, 5’ the area of its middle section, .i, the moment 
of inertia with respect to the vertical axis YI &is be the apparent moment of in- 
ertia, and the apparent masses hll = hss. 

We use the known equations of motion of a body in a horizontal plane in a fluid 
(see, e. g., [5 ] ), approximate the dependence of hydr~yMmic forces and moments 
on the angle of drift b = a, - rp, ( g, is the angle between the Ax -axis and 
the E -direction ) by Legendre polynomials, and introduce dimensionless variables 

Z, U,‘, vt’, rp’, and wv’ defined as follows; 

We specify in the general case the following structure of the dime~i~l~ control 
forces and moments : 

F, = --c~(‘P,J~ + Lv,’ + Ld, + p kclvx’s -t %vz’sl 

F - - c,o (rp,) g + l,lV,’ + l,,v,’ + tJ Ik%‘9+ wJz151 z- 

M, = - m,* (f&l) p i$ + kdP’ i- P t%(p’3 + aId+ 

where GO (%h GO (cp,), and ml10 (q,) are polynomials that are functions of 
polynomials which approximate hydrodynamic characteristics, and introduce the sub- 
stitution cp’ = - f &,J-*i q~“. Then, assuming that 

5 C (4 1x1 + &z C 0, (41 + &s)s + 4 (Z&i - -L&J < 0 

we obtain, as can be readily verified, a system of equations of the form& 1) in which 
the characteristic equation has a pair of pure imaginary roots fib (because Ic,<O) 
and two complex-conjugate roots with real parts equal ZS1 f Ezs when p = 0 , and 

5 = qf, y = o’, x1 = vrt, x2 = u,‘, h. = 1 k, j”‘, p = && 
Y 

and among the set of coefficients in the right-hand sides there are thirty nonzero, 
To reduce the system to the canonical form we further specify that &I -k 1,s # 

1x1 + 1,s . The roots of polynomial L1 (p) are of the form 

p1= 0, P2,3 =-t - ?J I 
2 m2,, (cp,) P 1/sL2 “’ 

A (cp,) mn, 1 
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Functions mlrl (q4,) and ~4 (cpo) are polynomials whose coefficients are deter - 
mined by the coefficients of the approximating polynomials. We thus obtain that when 

n, < 0 and angle cpo is such that A (cpJ > 0 and m,r (cpV) # 0 then 
for fairly small /r there exists steady oscillations which are stable with respect to 

region N and the equilibrium position is unstable. When n, > 0 and angle cpV 

is such that A (cp,) < 0 and %I (%) # 0, the oscillations in N are un- 

stable ; the equilibrium position relative to that region is stable. 

Region N in terms of input variables is determined by the following inequalities: 

(3.1) 

H1o= 2, Hao=-_, ll,l~_&lz-_~ 

A = ; &I!+ 4, - 1x1 - 1x2) 
1 

Tz = ; (a + 4, - Llh 82 = $1 + cc, - ha) 

g1 = l/z (Ll + L), hl = l/a 1 (Ll + by + 4(L,Z,, - Z&a) I", 

ra = (Pz + ho){l -p** [Op)+(p2 + s10)~0?)1} 

q3 = (Pz - 820) { 1 + p** @l) + (Pa - egapj} 

in which AQ and BP are obtained from A, and B, by substituting Q for 

ra . In the case of stable equilibrium position the second of inequalities in (3.1) 
must be discarded. 

Note that in theconsidered particular case oscillations (if they exist) with respect to 
cp are not only stable but, also, periodic, as implied by Bendickson’s theorem[8]. 

They are defined the following approximate formula: 

cp V) = - P (hz) + ps%.A$s) (hz))] co9 hz 

Up) (AT) = P& 2 130s 4hT + n, sin 4hT + 

4~cos2hz-8n,sin2Xr-55 1 
Numerical calculations require the availability of specific hydrodynamic char- 

acteristics . III this case such calculations make pcusible the separation of region QIO 
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of values of Cp,, in which for n, > 0 the equilibrium position nz = v, = 

cp =oy=o is stable relative to N, while oscillations are unstable, and 
region Q,, of values of qp, in which for n, ( 0 the equilibrium position is 
stable and the oscillations unstable. They also make it possible to determine p* * , 

A@** , es,,, Q, and region N that correspond to such cases, For example, the 
order of rna~~de of these quantities for rp, = 50”. (cp, E @,,) are as follows: 

p 
** - 10-4, 810 - 1, es0 - 1, ps - 10, and A,, - 10-l. 

The motion of the body, thus, consists of steady oscillations relative to the speci- 
fied dim&ion g and of some, generally speaking, small drift in the horizontal plane: 
parameters of these motions are estimated by inequalities (3.1). 

The author thanks the participants in the seminar on analytical mechanics and its 
leader, V. V. Rnmiantsev, for discussing this paper. 
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